Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Science ; 382(6668): 329-335, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37856600

RESUMO

Computing, since its inception, has been processor-centric, with memory separated from compute. Inspired by the organic brain and optimized for inorganic silicon, NorthPole is a neural inference architecture that blurs this boundary by eliminating off-chip memory, intertwining compute with memory on-chip, and appearing externally as an active memory chip. NorthPole is a low-precision, massively parallel, densely interconnected, energy-efficient, and spatial computing architecture with a co-optimized, high-utilization programming model. On the ResNet50 benchmark image classification network, relative to a graphics processing unit (GPU) that uses a comparable 12-nanometer technology process, NorthPole achieves a 25 times higher energy metric of frames per second (FPS) per watt, a 5 times higher space metric of FPS per transistor, and a 22 times lower time metric of latency. Similar results are reported for the Yolo-v4 detection network. NorthPole outperforms all prevalent architectures, even those that use more-advanced technology processes.

2.
Front Genet ; 13: 1024577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568361

RESUMO

Horizontal gene transfer mediated by conjugation is considered an important evolutionary mechanism of bacteria. It allows organisms to quickly evolve new phenotypic properties including antimicrobial resistance (AMR) and virulence. The frequency of conjugation-mediated cargo gene exchange has not yet been comprehensively studied within and between bacterial taxa. We developed a frequency-based network of genus-genus conjugation features and candidate cargo genes from whole-genome sequence data of over 180,000 bacterial genomes, representing 1,345 genera. Using our method, which we refer to as ggMOB, we revealed that over half of the bacterial genomes contained one or more known conjugation features that matched exactly to at least one other genome. Moreover, the proportion of genomes containing these conjugation features varied substantially by genus and conjugation feature. These results and the genus-level network structure can be viewed interactively in the ggMOB interface, which allows for user-defined filtering of conjugation features and candidate cargo genes. Using the network data, we observed that the ratio of AMR gene representation in conjugative versus non-conjugative genomes exceeded 5:1, confirming that conjugation is a critical force for AMR spread across genera. Finally, we demonstrated that clustering genomes by conjugation profile sometimes correlated well with classical phylogenetic structuring; but that in some cases the clustering was highly discordant, suggesting that the importance of the accessory genome in driving bacterial evolution may be highly variable across both time and taxonomy. These results can advance scientific understanding of bacterial evolution, and can be used as a starting point for probing genus-genus gene exchange within complex microbial communities that include unculturable bacteria. ggMOB is publicly available under the GNU licence at https://ruiz-hci-lab.github.io/ggMOB/.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32877338

RESUMO

The rapid growth in biological sequence data is revolutionizing our understanding of genotypic diversity and challenging conventional approaches to informatics. With the increasing availability of genomic data, traditional bioinformatic tools require substantial computational time and the creation of ever-larger indices each time a researcher seeks to gain insight from the data. To address these challenges, we pre-computed important relationships between biological entities spanning the Central Dogma of Molecular Biology and captured this information in a relational database. The database can be queried across hundreds of millions of entities and returns results in a fraction of the time required by traditional methods. In this paper, we describe Functional Genomics Platform (formerly known as OMXWare), a comprehensive database relating genotype to phenotype for bacterial life. Continually updated, the Functional Genomics Platform today contains data derived from 200,000 curated, self-consistently assembled genomes. The database stores functional data for over 68 million genes, 52 million proteins, and 239 million domains with associated biological activity annotations from Gene Ontology, KEGG, MetaCyc, and Reactome. The Functional Genomics Platform maps all of the many-to-many connections between each biological entity including the originating genome, gene, protein, and protein domain. Various microbial studies, from infectious disease to environmental health, can benefit from the rich data and connections. We describe the data selection, the pipeline to create and update the Functional Genomics Platform, and the developer tools (Python SDK and REST APIs)which allow researchers to efficiently study microbial life at scale.


Assuntos
Bases de Dados Genéticas , Software , Computação em Nuvem , Genoma , Genômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...